SCRAAM – AN EXPERIMENT TO TEST REACTOR FLUX PREDICTIONS AND PROBETHE "REACTOR ANTINEUTRINO ANOMALY"

November 17, 2011

Nathaniel Bowden

LLNL-PRES-514073

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

There is increasing interest in (Short Baseline) Antineutrino Monitoring of Reactors

AGENDA

Ad Hoc Working Group on Safeguards Applications of Antineutrino Detectors, 14 September 2011, Vienna, Austria

Basic science laid the foundation for this monitoring technique

- Reines and Cowan, 1956:
 - First to detect antineutrinos using a reactor source and a liquid scintillator detector

- Three decades of neutrino oscillation studies have provided:
 - A mature technology base
 - A quantitative understanding of reactors as an antineutrino source

Recent Re-evaluations of the Reactor Antineutrino Flux

- We have seen strong efforts to improve the conversion of ILL reference spectra to antineutrino spectra: ~3% increase in flux
- Two largely independent predictions agree:

- But, there are still considerable uncertainties related to some corrections:
 - a high-precision spectral measurement might help

The Reactor Antineutrino Anomaly

- Mention, et al, re-analyzed many previous short baseline reactor experiments, in light of their new antineutrino flux prediction
- The result: new global "Reactor Antineutrino Anomaly"

$$N_{obs}/N_{pred} = 0.979 + /-0.029 => 0.943 + /-0.023$$

The Reactor Anomaly is consistent with other hints at a sterile flavor

Astrophysical measurements are also consistent with ~eV sterile(s)

The recent results have sparked a new flurry of interest and activity

STERILE NEUTRINOS AT THE CROSSROADS
September 25-28, 2011 - Blacksburg, VA - USA

- Most sterile hints take the form of a deficit or excess relative to an (uncertain) expectation
- Strong desire in community for definitive experiments based on measurement of oscillation patterns
- Can a new short baseline reactor experiment help?

At short baselines, a reactor is not a point source

Reactor	Baseline	Core	Detector	ΔL/L (FWHM)	Power	Flux v/m²/s
ILL	10M	Øo.4m x o.2m (HEU)	Ø1mx1m	~8%	58 MW _{th}	~1X10 ¹⁶
Bugey3	15M	Ø2.5 x 2.5m	1mx1m	~30%	2800 MW _{th}	~2X10 ¹⁷
SONGS	24M	Ø3m x 2m	Ø1mx2m	~10%	3400 MW _{th}	~1X10 ¹⁷

Effect of Baseline and Baseline Distribution

- No previous experiment appears to have been optimized in this respect
- Experiments at appropriate small and large reactors would be complementary:
 - efficiently probe different Δm^2 regions
 - measuring flux/spectra from different core compositions

SCRAAM: The Southern California Reactor Antineutrino Anomaly Monitor

- Our proposal is to perform a relatively rapid and inexpensive experimental measurement
 - —Direct sterile oscillation sensitivity via spectra distortion
 - —High statistics flux and spectrum measurement from a single Pressurized Water Reactor (PWR)
- This requires access to location(s) with high antineutrino flux and appropriate core-detector geometry

The San Onofre Nuclear Generating Station: Our (nonproliferation) laboratory for over a decade

Direct Observation of reactor fuel burnup via antineutrino counting

- We have cultivated an exceptionally strong and trusting relationship with SONGS:
 - A multitude of access requests have been readily granted since 1999
 - Provide unescorted reactor access, deployment assistance, commercially sensitive fueling data, introductions to other operators,
- We possess unparalleled operational experience in this industrial environment:
 - Five detector deployments since 2003

Tendon Galleries are Ideal Deployment

Locations

- High Flux: $\sim 10^{17} \text{ v/m}^2/\text{s}$
- 130-18om to other reactor
- Gallery is annular unfortunately no possibility to vary baseline

Tendon Gallery Access

The SCRAAM Detector Concept

- A relatively long/narrow geometry is needed: Ø1m x
 2m length
 - Tendon gallery is fairly narrow
- 1.5 ton active mass
 - ~9000 inverse beta interactions/day
 - Conservative 40% efficiency gives detection rate of ~4000/day
- Double ended optical readout and diffuse reflective coating for good light collection and position uniformity: expect to achieve 10% energy resolution at 1MeV
- Guide tubes for calibration
- Aim for at least 4% absolute normalization
 - e.g. include partial "gamma catcher" to increase precision and efficiency
- Component costs: ~\$8ook

We have completed considerable R&D on detectors of this scale

- Most recent: 3.6 ton liquid scintillator detector (BC-525, 0.1% Gd)
 - For deployment at a CANDU6 reactor in 2012
 - Understand safety and regulatory requirements for reactor site
 - Successful commissioning run just completed
 - Validated mechanical design for double ended PMT readout

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 0.15 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 0.60 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 1.2 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 2.4 \text{ eV}^2$

150 days, $\sin^2(2\theta) = 0.165$, $\Delta m^2 = 4.8eV^2$

Exclusion Estimates: Shape

- 150 days, 99% C.L.
- 1.5% Energy scale error, 8/1 Signal/Background

Investigating possibility of complementary compact core measurement

- Advanced Test Reactor at Idaho National Lab
- Unique "serpentine" 1.2m HEU core, ~150MW_{th}
- Convenient 60 day on, 30 day off cycle
- Potential below grade deployment locations near core
- At 12m baseline, spread similar to that at SONGS

Exclusion Estimates: Shape

- 99% C.L.; 150 days@ SONGS; 300 days@ ATR
- 1.5% Energy scale error, 8/1 Signal/Background

Combined analysis of multiple baselines would have broad sensitivity

 Key parameters would be relative energy scale and normalization: O. Yasuda, arXiv:1107.4766

SONGS Core evolution is well understood

 Again, through our long interaction with SONGS we have access to operator fueling and reactor data

- Unlike the theta13 near detectors, the SCRAAM spectrum measurement would effectively be from a single core
 - In the absence of spectral distortion, this measurement could better constrain prediction uncertainties

Nominal Schedule

- SONGS outages are key; ~50 day background measurement:
 - Unit 2 Sept. '13
 - Unit 3 Sept '14
- Given our recent
 experience, 15-18
 months from design
 to deployment
 seems feasible
- Could have first results within ~9 months of data taking

Effort and Budget

	FY12	FY13	FY14	FY15	FY16
PI	o.5 FTE	o.5 FTE	0.75 FTE	0.75 FTE	0.75 FTE
Post-doc	o.5 FTE	o.5 FTE	0.75 FTE	0.75 FTE	0.75 FTE
Engineer/ Technologist	o.66 FTE	o.33 FTE	0.17 FTE	0.17 FTE	o.o8 FTE
Total FTE	1.66 FTE	1.33 FTE	1.67 FTE	1.67 FTE	1.58 FTE
Equipment	\$350K	\$440K			
Approx. Total Cost	\$900K	\$900K	\$500K	\$500K	\$500K

Potential Collaborators

- John Learned, U. Hawaii
 - Fabrication, software
- HANARO Group (South Korea)
 - High flash-point Scintillator
- ...

Conclusions

- Short baseline reactor efforts have continued, attempting to develop a new safeguards technique
 - The reactor access, reactor simulation, and detector design expertise from the applied community can be exploited to probe the "RAA"
- Short baseline measurements at appropriate small (research) and large (power) reactors would be complementary:
 - Efficiently probe different Δm^2 regions and measuring spectra from different core compositions
 - SONGS appears optimal for a power reactor deployment
 - ATR appears very promising as a research reactor deployment site
 - Combined analysis of two deployments could have even better sensitivity
- SCRAAM would rapidly exclude a large fraction of the ~ 1eV²
 "RAA" allowed phase space, and have good discovery potential in the "best-fit" region

Exclusion Estimates: Shape + Rate

- 150 days, 99% C.L.
- 4% Normalization, 1.5% Energy scale error, 8/1 Signal/Background

SONGS Backgrounds

- Our SONGS1 detector had S/B of ~4/1
- Background was primarily:
 - Fast neutron recoil followed by capture
 - Multiple neutron capture
- There is reason to believe that we can do considerably better with SCRAAM:
 - SONGS1 had only 95% muon veto and "non-hermetic" shielding
 - Improved neutron capture efficiency and analysis will allow rejection many more multiple neutrons

Detection Rate, Detector Systematics

- Assuming 40% efficiency, expect detection rate of about 4000 v/day
- Precision on absolute efficiency of ~ 4% would require considerable effort, but appears feasible
- Extensive source calibrations would be required

Systematic	Target Value	Mitigation
No. of target protons	1.5%	Weighting, solvent selection
Neutron efficiency	1.5%	Gamma catcher, calibration
Positron efficiency	1%	calibration, ideally $\approx 500 \text{ keV}$ threshold
Core-Detector distance	0.5%	Through document review, possible survey
Deadtime	0.25%	precise measurement, tracking
Detector Total (Flux Measurement)	2.4%	
Reactor Systematics	2.7%	
Total on N_{obs}/N_{pred}	3.6%	

A compact core effort: Nucifer

(see also Y.D. Kim poster)

Nucifer @ Osiris

- 70 MW reactor
- Nucifer 7 m from the core
- 15 mwe overburden

650 v/day expected
Assuming 50% det efficiency

- Reactor Background:
 - Additional 10 cm lead shielding needed due to reactor induceα γ rays
- Based on simulation and on site measurements:
 - S/B_{accidentals} = 1
 - S/B_{correlated} = 0.25 before PSD cut, ~2.5 expected after PSD selection.
 Reactor OFF 33% of the time, will allow final background subtraction.

Testing the $4^{th} \nu$ hypothesis

100 days full power @ Osiris:

- 4% norm error
- E resol = 0.15*E
- •2% E scale error
- •S/B = 1 (?), assuming same shapes (worst case).

Other Proposed Efforts (\$\$\$)

PBq neutrino sources into KamLAND, SNO+, etc

- Multi-Detector Accelerator experiments
 - BOONE
 - 2 x LAr TPC @ CERN PS
 - 2 x LAr TPC @ FermiLAB

 (PLANCK will provide much tighter cosmological bounds in ~2014-15)

